
1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 1/27

Programs Store Data within Variables

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 2/27

In [1]:

In [2]:

Understanding C's Four Basic Variable Types

Hello, world

#include <stdio.h>

int main(void)
{
 // Variable declarations go here

 printf("Hello, world");
}

#include <stdio.h>

int main(void)
{
 int height; // student height
 int weight; // student weight
 int age; // student age

 // Remaining program statements
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 3/27

In [3]:

Assigning a Value to a Variable
In [4]:

#include <stdio.h>

int main(void)
{
 char letter; // Stores a single character such as A through Z
 int count; // Stores a counting number, either positive or negative
 float salary; // Stores a single-precision floating-point number such as 3.14 o
 double tax; // Stores a double-precision floating-point number such as 1.2345
}

#include <stdio.h>

int main(void)
{
 int height; // student height
 int weight; // student weight
 int age; // student age

 height = 73;
 weight = 180;
 age = 30;

 // Remaining program statements
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 4/27

Declaring Multiple Variables of the Same Type on
the Same Line

In [5]:

In [6]:

#include <stdio.h>

int main(void)
{
 int age;
 int weight;
 int height;
}

#include <stdio.h>

int main(void)
{
 int age, weight, height;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 5/27

Commenting Your Variables at Declaration
In [7]:

#include <stdio.h>

int main(void)
{
 int age; // user's age
 int weight; // user's weight in pounds
 int height; // user's height in inches
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 6/27

Assigning Values to Variables at Declaration
In [8]:

Initializing Same Line Variables at Declaration
In [9]:

#include <stdio.h>

int main(void)
{
 int age = 30; // user's age in years
 int height = 73; // user's height in inches
 int weight = 180; // user's weight in pounds
}

#include <stdio.h>

int main(void)
{
 int age = 30, weight = 180, height = 73;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 7/27

Use Meaningful Variable Names
In [10]:

#include <stdio.h>

int main(void)
{
 int a, b, c; // not meaningful names

 int test_score, studentID, hoursWorked; // better readable variable names
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 8/27

Understanding C's Keywords

In [11]:

Understanding Variables of Type int
Stores positive and negative counting numbers -3, -2, -1, 0, 1, 2, 3

No decimal point

/tmp/tmpgw85cvr7.c: In function ‘main’:
/tmp/tmpgw85cvr7.c:5:8: error: expected identifier or ‘(’ before ‘switch’
 int switch; // cannot use keyword switch for a variable name
 ^~~~~~
[C kernel] GCC exited with code 1, the executable will not be executed

auto default float register struct volatile
break do for return switch while
case double goto short typedef
char else if signed union
const enum int sizeof unsigned
continue extern long static void

#include <stdio.h>

int main(void)
{
 int switch; // cannot use keyword switch for a variable name
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 9/27

Value range is determined by the number of bytes the compiler uses to store a value of type int

Understanding Variables of Type char

Store a byte of data (-128 to 127)

Normally stores an ASCII character

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 10/27

Understanding Variables of Type float

Understanding Variables of Type Double

A number with a decimal point such as 3.14

Normally has about seven digits of precision 1.23456789;

A number with a decimal point

Twice the precision of a variable of type float (about 14 digits)

1.234567901234567;

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 11/27

Assigning Values to Floating-Point Variables
In [12]:

#include <stdio.h>

int main(void)
{
 float pi = 3.14159;
 float small = 1.234e-5;
 double large = 1234567890.0;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 12/27

Understanding Type Modifiers
In [13]:

Understanding the unsigned Type Modifier

In [14]:

#include <stdio.h>

int main(void)
{
 unsigned int currentInventory;
 register int loopCount;
 long int secondsSince1970;
}

Only stores positive numbers

Using the sign bit as part of the variable's value to increase the range of
values an integer can store

#include <stdio.h>

int main(void)
{
 unsigned int seconds_until_launch; // will never be negative
 unsigned char extended_ASCII_code; // ASCII characters 0 to 255
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 13/27

Understanding the Long Modifier

In [15]:

Stores very large numbers such as 123456789012345 as an integer value

When used with a constant, append an L 123456789012345L

#include <stdio.h>

int main(void)
{
 long int national_debt = 30000000000000L;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 14/27

Understanding the long unsigned Type
Modifier

In [16]:

Working with Long Values

Only positive values

Uses the sign bit as part of the variable's value to increase the range of
values the variable can store

#include <stdio.h>

int main(void)
{
 unsigned long int current_time_in_seconds;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 15/27

In [17]:

Understanding the register Type Modifier
In [18]:

#include <stdio.h>

int main(void)
{
 long int million = 1000000L; // Note L at end of constant
 long int big_number = 1234567890L;
}

#include <stdio.h>

int main(void)
{
 register int count;
 register unsigned timer;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 16/27

Understanding the short Type Modifier
In [19]:

Omitting int from Modified Declarations

#include <stdio.h>

int main(void)
{
 short int count; // Typically -32,768 through 32,767
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 17/27

In [20]:

Understanding the signed Type Modifier
In [21]:

#include <stdio.h>

int main(void)
{
 short int year = 2021;
 short last_year = 2020;

 unsigned int seconds;
 unsigned hours;
}

#include <stdio.h>

int main(void)
{
 signed char ASCII_character;
 signed int seconds;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 18/27

Multiple Assignment Operations
In [22]:

#include <stdio.h>

int main(void)
{
 int counter = 0;
 int sum = 0;
 int value = 0;

 int Count, Sum, Value = 0; // assign each variable the value 0
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 19/27

Assigning the Value of One Type of Variable to
Another

In [23]:

Creating Your Own Data Types

Value 3
Value 9

#include <stdio.h>

int main(void)
{
 int value;
 float pi = 3.14159;
 float cost = 9.95;

 value = pi;
 printf("Value %d\n", value);

 value = cost;
 printf("Value %d\n", value);
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 20/27

In [24]:

Assigning an Octal or Hexadecimal Value
In [25]:

#include <stdio.h>

int main(void)
{
 unsigned long int secondsSince1970;
 unsigned long int population;

 typedef unsigned long int ULINT;
 ULINT distanceToMoon;
}

#include <stdio.h>

int main(void)
{
 int octalValue = 0123;
 int hexValue = 0xA3FF;
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 21/27

Understanding Overflow

In [26]:

Positive 32767
Positive -32768

0 0000 0000 0000 0000
1 0000 0000 0000 0001
2 0000 0000 0000 0010
3 0000 0000 0000 0011

32,765 0111 1111 1111 1101
32,766 0111 1111 1111 1110
32,767 0111 1111 1111 1111

+1

-32-768 1111 1111 1111 1111

#include <stdio.h>

int main(void)
{
 short int positive = 32767;
 printf("Positive %d\n", positive);

 positive = positive + 1;
 printf("Positive %d\n", positive);
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 22/27

Understanding Precision
In [27]:

accurateValue 0.12345679104328155518
moreAccurate 0.12345678901234567737

#include <stdio.h>

int main(void)
{
 float accurateValue = 0.12345678901234567890;
 double moreAccurate = 0.12345678901234567890;

 printf("accurateValue %21.20f\n", accurateValue);
 printf("moreAccurate %21.20f", moreAccurate);
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 23/27

Understanding Enumerated Types
In [28]:

Favorite player Michael Jordan

#include <stdio.h>

int main(void)
{
 enum sports { basketball, baseball, football, soccer } game;

 game = basketball;

 switch (game)
 {
 case basketball: printf("Favorite player Michael Jordan\n");
 break;
 case football: printf("Favorite player Troy Aikmen\n");
 break;
 case baseball: printf("Favorite player Willie Mays\n");
 break;
 case soccer: printf("Favorite play Pele\n");
 break;
 }
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 24/27

Looping Through an Enumerated List
In [29]:

Understanding Enumerated List Values

Favorite player Michael Jordan
Favorite player Willie Mays
Favorite player Troy Aikmen
Favorite play Pele

#include <stdio.h>

int main(void)
{
 enum sports { basketball, baseball, football, soccer } game;

 for (game = basketball; game <= soccer; game++)
 switch (game)
 {
 case basketball: printf("Favorite player Michael Jordan\n");
 break;
 case football: printf("Favorite player Troy Aikmen\n");
 break;
 case baseball: printf("Favorite player Willie Mays\n");
 break;
 case soccer: printf("Favorite play Pele\n");
 break;
 }
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 25/27

In [30]:

Assigning Specific Values to Enumerated
Types

In [31]:

basketball 0 baseball 1 football 2 soccer 3

basketball 10 baseball 20 football 30 soccer 40

#include <stdio.h>

int main(void)
{
 enum sports { basketball, baseball, football, soccer } game;

 printf("basketball %d baseball %d football %d soccer %d\n",
 basketball, baseball, football, soccer);
}

#include <stdio.h>

int main(void)
{
 enum sports { basketball = 10, baseball = 20, football = 30, soccer = 40 } game

 printf("basketball %d baseball %d football %d soccer %d\n",
 basketball, baseball, football, soccer);
}

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 26/27

What You will Learn Next

C programs make extensive use of the printf function to display output.

printf("%d %f %s\n", 1, 3.14, "Hello, world");

1/31/2021 C Programming-Types and Variables

localhost:8888/notebooks/C Programming-Types and Variables.ipynb 27/27

